re-establishing Roman cements to the conservation practice

Roman Kozlowski, Polish Academy of Sciences, Krakow, Poland

Roman cement – what is it?

Roman cements were produced by:

firing marls – limestones containing clay,
below their sintering temperature,
grinding burnt stones to a required
fineness.

Roman cement – history

1796, England, first patent by James Parker, trade name "Roman cement"

1850 – 1914, key material to cover facades during the 19th and early 20th centuries

after 1918, decline in the production and use

now, attempts to bring back Roman cement to conservation practice

England

Septaria – nodules of clay-containing limestone

Septaria and cements

Shaft kiln in Whitby once...

...and today

Early developments in Central Europe - import

Old Nazareth Church, 1832-35, Karl Friedrich Schinkel, Berlin

Roman cement – material of the European dimension

Marl deposits were sources of raw materials in Central Europe

Historic quarry in Lielienfeld, Austria

Packing and transport

Roman cement - features

short time of setting, typically 7 - 20 minutes warm yellow-to-brown colour good durability to atmospheric influences

Grand stuccoes

Architectural surfaces

Run elements

Castings

ROCEM 'Roman cement to restore built heritage * effectively'

<u>duration</u> 2003-2006

10 partners – research/education (5), companies (5)

budget 1.37 mln Euro

Overall approach in the project

Analysis of historic mortars collected across Europe, survey of archival sources

Production of optimum Roman cements on laboratory and pilot scale

Formulation and tests of mortars matching the historic materials

Practical application in workshop and conservation practice

Marls

- mineral composition of the Lilienfeld marl - 63% calcite - CaCO₃, 23% clay -(K,Mg,Fe)_x(Al,Si)_yO_z, 9% quartz - SiO₂
- very fine grained
- natural, intimate mixture of calcite and clay

Chemical reactions during the burning process

- decomposition of calcite to lime -CaCO₃ → CaO
- reaction between lime and aluminosilicates leads to the formation of the cement phases: belite – dicalcium silicate and calcium aluminates

Roman cement among hydraulic binders

Ancient Rome

 $T_c < 900$ °C

Natural /artificial pozzolans slaked lime

Ca/Si < 2?

Roman cement

T_c: 850 – 950°C

High clay content (30-40%)

Free lime < 1%
Fast binding

Ca/Si < 2

Hydraulic limes

T_c: 1000 – 1200°C

clay content < 25%

High free lime content (slaked)

Slow binding

Ca/Si > 2

Portland cement

T_c: 1460°C

Highly hydraulic klinkerphases Free lime < 1%

Controlled rate of binding

Ca/Si > 3

Roman cement - hydration

belite Ca₂SiO₄

calcium aluminates

fast reaction

C - A - H

Strength development

Optimising burning conditions

setting

early strength (6 hours)

late strength one year

Pilot scale firing

electric kiln - 300 kg load of marls

Hydration mechanism makes Roman cement a good binder for stuccowork

early
 strength of
 1 – 5 MPa
 allows
 demoulding
 of a casting
 after 15
 minutes

 high late strength makes the decoration durable

Coarse grinding and non-uniform firing

- historically, cement stones were burnt to various degrees – underburnt, well burnt, overburnt
- they were coarsely ground (grain size up to 1 mm)
- result a characteristic structure of Roman cement mortars

Cement remnants encapsulated in the hydrated groundmass

<u>Characteristic structure of Roman</u> cement mortars

the remnants
 of the cement
 grains are
 "active"
 aggregate well
 bound to the
 surrounding
 matrix

A cross-section through a historic casting

Roman cements re-established during the project were used in practical conservation

more information Jacek Olesiak

ROCARE – a new EC project

ROman Cements for Architectural **RE**storation to new high standards

duration: 2009-2012

14 partners

coordinated by professor Johannes Weber from the University of Applied Art in Vienna

<u>Objectives</u>

- develop diversified production of Roman cements
- fully understand processes during the cement hydration
- involve the specific demands of endusers
- establish Roman cements as marketable building materials

Concept

Collaborative action of different group of partners:

- producers of Roman cements
- research units
- end users
- institutions regulating issues of application (the Advisory Panel)

